Mean-Square Approximation by Polynomials on the Unit Disk
نویسندگان
چکیده
منابع مشابه
Shape Preserving Approximation by Complex Polynomials in the Unit Disk
The purpose of this paper is to obtain new results concerning the preservation of some properties in Geometric Function Theory, in approximation of analytic functions by polynomials, with best approximation types of rates. In addition, the approximating polynomials satisfy some interpolation conditions too.
متن کاملRational Chebyshev Approximation on the Unit Disk
In a recent paper we showed that er ror curves in po lynomia l Chebyshev a p p r o x i m a t i o n of ana ly t ic functions on the unit disk tend to a p p r o x i m a t e perfect circles abou t the origin [23]. M a k i n g use of a theorem of Ca ra th6odo ry and Fej6r, we der ived in the process a me thod for calculat ing near-bes t a p p r o x i m a t i o n s rapid ly by finding the pr incipal...
متن کاملThomson’s Theorem on Mean Square Polynomial Approximation
In 1991, J. E. Thomson determined completely the structure of H2(μ), the closed subspace of L2(μ) that is spanned by the polynomials, whenever μ is a compactly supported measure in the complex plane. As a consequence he was able to show that if H2(μ) = L2(μ), then every function f ∈ H2(μ) admits an analytic extension to a fixed open set Ω, thereby confirming in this context a phenomenon noted e...
متن کاملOn Coloring the Square of Unit Disk Graph (DRAFT)
A graph G is a Unit Disk (UD) graph if there is an assignment of unit disks centered at its vertices such that there is an edge in G iff the corresponding unit disks intersect. The square G of G is defined as a graph on the same vertex set as G and having edges between pairs of vertices with graph distance at most two in G. Our results on the chromatic number of G are motivated by an applicatio...
متن کاملOn the approximation by {polynomials
As usual, p∗ is called a best approximation (b.a.) to f in (or, by elements of) IPγ,n. To give some examples, let X = Lp[0, 1] and set γ(t) = G(·, t), where G(s, t) is defined on [0, 1] × T . With G Green’s function for a k–th order ordinary linear initial value problem on (0, 1] and T = [0, 1), one has approximation by generalized splines. With G(s, t) = e and T = IR, one has approximation by ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 1990
ISSN: 0002-9947
DOI: 10.2307/2001520